Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.259
Filtrar
1.
Front Immunol ; 15: 1374763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596682

RESUMO

Background: Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods: We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results: The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.


Assuntos
Psoríase , Humanos , Psoríase/tratamento farmacológico , Pele/patologia , Queratinócitos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo
2.
Genome Med ; 16(1): 51, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566128

RESUMO

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Microglia/metabolismo , Ecossistema , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fenótipo , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Microambiente Tumoral/genética
3.
J Immunol ; 212(9): 1397-1405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621195

RESUMO

The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Apoptose , Células Dendríticas/metabolismo , Microambiente Tumoral
4.
Front Immunol ; 15: 1335651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566998

RESUMO

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Assuntos
Interleucina-33 , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Obesidade/metabolismo , Células Dendríticas/metabolismo
5.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429401

RESUMO

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Assuntos
Calgranulina A , Calgranulina B , Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Animais , Camundongos , Células Dendríticas/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
6.
Front Immunol ; 15: 1374670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529288

RESUMO

Introduction: Allergic asthma has been mainly attributed to T helper type 2 (Th2) and proinflammatory responses but many cellular processes remain elusive. There is increasing evidence for distinct roles for macrophage and dendritic cell (DC) subsets in allergic airway inflammation (AAI). At the same time, there are various mouse models for allergic asthma that have been of utmost importance in identifying key inflammatory pathways in AAI but that differ in the allergen and/or route of sensitization. It is unclear whether and how the accumulation and activation of specialized macrophage and DC subsets depend on the experimental model chosen for analyses. Methods: In our study, we employed high-parameter spectral flow cytometry to comprehensively assess the accumulation and phenotypic alterations of different macrophage- and DC-subsets in the lung in an OVA- and an HDM-mediated mouse model of AAI. Results: We observed subset-specific as well as model-specific characteristics with respect to cell numbers and functional marker expression. Generally, alveolar as opposed to interstitial macrophages showed increased MHCII surface expression in AAI. Between the models, we observed significantly increased numbers of alveolar macrophages, CD103+ DC and CD11b+ DC in HDM-mediated AAI, concurrent with significantly increased airway interleukin-4 but decreased total serum IgE levels. Further, increased expression of CD80 and CD86 on DC was exclusively detected in HDM-mediated AAI. Discussion: Our study demonstrates a model-specific involvement of macrophage and DC subsets in AAI. It further highlights spectral flow cytometry as a valuable tool for their comprehensive analysis under inflammatory conditions in the lung.


Assuntos
Asma , Macrófagos Alveolares , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Modelos Animais de Doenças , Células Th2/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Inflamação/metabolismo , Células Dendríticas/metabolismo
7.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453000

RESUMO

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Assuntos
COVID-19 , Receptores de Superfície Celular , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Sinalização das MAP Quinases , Células THP-1 , Peptídeos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Células Dendríticas/metabolismo
8.
Cell Rep ; 43(3): 113929, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457343

RESUMO

Neutrophil-derived bactericidal/permeability-increasing protein (BPI) is known for its bactericidal activity against gram-negative bacteria and neutralization of lipopolysaccharide. Here, we define BPI as a potent activator of murine dendritic cells (DCs). As shown in GM-CSF-cultured, bone-marrow-derived cells (BMDCs), BPI induces a distinct stimulation profile including IL-2, IL-6, and tumor necrosis factor expression. Conventional DCs also respond to BPI, while M-CSF-cultivated or peritoneal lavage macrophages do not. Subsequent to BPI stimulation of BMDCs, CD4+ T cells predominantly secrete IL-22 and, when naive, preferentially differentiate into T helper 22 (Th22) cells. Congruent with the tissue-protective properties of IL-22 and along with impaired IL-22 induction, disease severity is significantly increased during dextran sodium sulfate-induced colitis in BPI-deficient mice. Importantly, physiological diversification of intestinal microbiota fosters BPI-dependent IL-22 induction in CD4+ T cells derived from mesenteric lymph nodes. In conclusion, BPI is a potent activator of DCs and consecutive Th22 cell differentiation with substantial relevance in intestinal homeostasis.


Assuntos
Linfócitos T Auxiliares-Indutores , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Permeabilidade
9.
Cell Rep ; 43(3): 113949, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492222

RESUMO

Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.


Assuntos
Monócitos , Proteoma , Animais , Camundongos , Proteoma/metabolismo , Citometria de Fluxo , Células Dendríticas/metabolismo
10.
Methods Cell Biol ; 183: 51-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548421

RESUMO

Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Vírus Oncolíticos , Humanos , Glioblastoma/terapia , Vírus Oncolíticos/genética , Neoplasias Encefálicas/terapia , Estudos Retrospectivos , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/metabolismo
11.
J Med Virol ; 96(3): e29546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516804

RESUMO

Tapasin, a crucial molecular chaperone involved viral antigen processing and presentation, plays an important role in antivirus immunity. However, its impact on T cell differentiation in the context of virus clearance remains unclear. In this study, we employed induced pluripotent stem cells to differentiate into hepatocyte-like cell, which were subsequently inserted to the inverted colloidal crystal scaffolds, thus establishing a hepatocyte organoid (HO). By inoculating hepatitis B virus (HBV) particles in the system, we successfully engineered a robust in vitro HBV infection model for at least 3 weeks. Furthermore, we aimed to explore the effects of lentivirus-mediated short hairpin RNA (shRNA) targeting human Tapasin on the differentiation and antiviral function of CD8+ T cells. Specifically, we transfected dendritic cells (DCs) with Tapasin-shRNA and cocultured with T cells. The results demonstrated that Tapasin-shRNA transfected DCs effectively suppressed T cell proliferation and impeded HBV-specific cytotoxic T lymphocyte responses. Our investigation also revealed the role of mTOR pathway activation in reducing autophagy activity within CD8+ T cells. Expressions of autophagy-related proteins, beclin-1, LC3II/LC3I were decreased and PI3K/AKT/mTOR activity was increased in Tapasin-shRNA group. Collectively, our findings elucidate that shRNA targeting the Tapasin gene within DCs inhibits T cell differentiation by reducing autophagy activity to hamper viral clearance in the HBV-infected HO.


Assuntos
Células Dendríticas , Hepatite B , Proteínas de Membrana Transportadoras , Humanos , Autofagia/genética , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Regulação para Baixo , Hepatite B/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Organoides/metabolismo , Organoides/virologia
12.
Clin Immunol ; 262: 110166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432423

RESUMO

BACKGROUND: Amoxicillin (AX) and clavulanic acid (CLV) are the betalactam antibiotics (BLs) most used to treat bacterial infections, although they can trigger immediate hypersensitivity reactions (IDHRs). The maturation analysis of monocyte-derived dendritic cells (moDCs) and their capacity to induce proliferative response of lymphocytes are useful to test the sensitisation to a drug, although without optimal sensitivity. Nevertheless, this can be improved using directly isolated DCs such as myeloid DCs (mDCs). METHODS: mDCs and moDCs were obtained from 28 allergic patients (AP), 14 to AX, 14 to CLV and from 10 healthy controls (HC). The expression of CCR7, CD40, CD80, CD83, and CD86 was analysed after stimulation with both BLs. We measured the capacity of these pre-primed DCs to induce drug-specific activation of different lymphocyte subpopulations, CD3+, CD4+, CD8+, CD4+Th1, and CD4+Th2, by flow cytometry. RESULTS: Higher expression of CCR7, CD40, CD80, CD83, and CD86 was observed on mDCs compared to moDCs from AP after stimulating with the culprit BL. Similarly, mDCs induced higher proliferative response, mainly of CD4+Th2 cells, compared to moDCs, reaching up to 67% of positive results with AX, whereas of only 25% with CLV. CONCLUSIONS: mDCs from selective AP efficiently recognise the culprit drug which trigger the IDHR. mDCs also trigger proliferation of lymphocytes, mainly those with a Th2 cytokine pattern, although these responses depend on the nature of the drug, mimicking the patient's reaction.


Assuntos
Hipersensibilidade Imediata , Hipersensibilidade , Humanos , Receptores CCR7/metabolismo , Citocinas/metabolismo , Amoxicilina/metabolismo , Hipersensibilidade/metabolismo , Ácido Clavulânico/metabolismo , Antígenos CD40 , Células Dendríticas/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474011

RESUMO

Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.


Assuntos
Genes Homeobox , Neoplasias Hematológicas , Humanos , Diferenciação Celular , Linhagem Celular , Células Mieloides/metabolismo , Células Dendríticas/metabolismo , Neoplasias Hematológicas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética
14.
Cell Mol Life Sci ; 81(1): 149, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512518

RESUMO

Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Neoplasias/metabolismo , Células Dendríticas/metabolismo , Imunidade Inata
15.
Front Immunol ; 15: 1329615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476223

RESUMO

Background: Patients with metastatic colorectal cancer (mCRC) who are refractory to two or more lines of systemic chemotherapy have limited therapeutic options. The aim of this study was to evaluate the effect of autologous dendritic cell cytokine-induced killer (DC-CIK) transfer on the survival of patients with mCRC who are refractory or intolerant to at least two lines of systemic chemotherapies. Methods: A matched case-control comparative study was conducted with patients who received DC-CIK immunotherapy in addition to standard chemotherapy (cases) and those with standard chemotherapy alone (controls). The primary objective was to compare the duration of oncologic survival, including overall survival (OS) and progression-free survival (PFS), between the two groups. Results: A total of 27 cases and 27 controls were included. The median OS in the DC-CIK case group was 18.73 ± 5.48 months, which was significantly longer than that in the control group (14.23 ± 1.90 months, p = 0.045). However, there was no significant difference in PFS between the two groups (p = 0.086). Subgroup analysis showed that in patients with liver or extra-regional lymph node metastasis, DC-CIK cases had longer OS than controls (17.0 vs. 11.87 months, p = 0.019; not match vs. 6.93 months, p = 0.002, respectively). In patients with Eastern Cooperative Oncology Group (ECOG) scale 0 or wild RAS/BRAF, DC-CIK cases showed a significant increase in OS duration compared to controls (28.03 vs. 14.53 months, p = 0.038; 18.73 vs. 11.87 months, p = 0.013, respectively). Conclusions: The addition of autologous DC-CIK to standard chemotherapy had a positive effect on OS of patients with refractory mCRC, especially those with liver or extra-regional lymph node metastasis, ECOG = 0, and wild RAS/BRAF status.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Terapia Combinada , Metástase Linfática , Proteínas Proto-Oncogênicas B-raf/metabolismo , Imunoterapia Adotiva , Estudos de Casos e Controles , Células Dendríticas/metabolismo , Neoplasias Colorretais/patologia
16.
BMC Immunol ; 25(1): 17, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347451

RESUMO

BACKGROUND: Itch sensitization has been reported in patients with chronic allergic skin diseases and observed in a mouse model of allergic contact dermatitis (ACD). There is evidence suggesting that neuroimmune interactions may contribute to itch sensitization, as an increase in dendritic cells (DCs) within ganglia has been observed during allergic conditions. However, how DCs interact with sensory neurons in ganglia during allergic conditions is still not known. This study aims to investigate the role of DCs in dorsal root ganglion (DRG) under ACD conditions, specifically focusing on itch sensitization within the DRG. The tolylene-2,4-diisocyanate (TDI) mouse model for ACD and the co-culture model of DCs and DRG neurons was employed in this study. RESULTS: We successfully induced ACD by TDI, as evidenced by the development of edema, elevated total serum IgE levels, and an observed itch reaction in TDI-sensitized mice. Calcium imaging and RT-qPCR analysis revealed that TDI-sensitized mice exhibited signs of peripheral sensitization, including a higher percentage of neurons responding to pruritogens and increased activation and expression of itch receptors in excised DRG of TDI-sensitized mice. Immunofluorescence and flow cytometric analysis displayed an increase of MHCII+ cells, which serves as a marker for DCs, within DRG during ACD. The co-culture study revealed that when DRG neurons were cultured with DCs, there was an increase in the number of neurons responsive to pruritogens and activation of itch receptors such as TRPA1, TRPV1, H1R, and TRPV4. In addition, the immunofluorescence and RT-qPCR study confirmed an upregulation of TRPV4. CONCLUSIONS: Our findings indicate that there is an increase of MHCII+ cells and itch peripheral sensitization in DRG under TDI-induced ACD condition. It has been found that MHCII+ cells in DRG might contribute to the itch peripheral sensitization by activating itch receptors, as shown through co-culture studies between DRG neurons and DCs. Further studies are required to identify the specific mediator(s) responsible for peripheral sensitization induced by activated DCs.


Assuntos
Hipersensibilidade , Canais de Cátion TRPV , Humanos , Animais , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/efeitos adversos , Técnicas de Cocultura , Prurido/induzido quimicamente , Prurido/metabolismo , Neurônios/metabolismo , Células Dendríticas/metabolismo
17.
Cancer Rep (Hoboken) ; 7(2): e1996, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351552

RESUMO

BACKGROUND: Dendritic cells (DCs) play a crucial role in immunity. Research on monocyte-derived DCs (Mo-DCs) cancer vaccines is in progress despite limited success in clinical trials. This study focuses on Mo-DCs generated from prostate cancer (PCA) patients, comparing them with DCs from healthy donors (HD-DCs). METHODS: Mo-DCs were isolated from PCA patient samples, and their phenotype was compared to HD-DCs. Key parameters included monocyte count, CD14 expression, and the levels of maturation markers (HLA-DR, CD80, CD86) were assessed. RESULTS: PCA samples exhibited a significantly lower monocyte count and reduced CD14 expression compared to healthy samples (p ⟨ 0.0001). Additionally, PCA-DCs expressed significantly lower levels of maturation markers, including HLA-DR, CD80, and CD86, when compared to HD-DCs (p = 0.123, p = 0.884, and p = 0.309, respectively). CONCLUSION: The limited success of DC vaccines could be attributed to impaired phenotypic characteristics. These observations suggest that suboptimal characteristics of Mo-DCs generated from cancer patient blood samples might contribute to the limited success of DC vaccines. Consequently, this study underscores the need for alternative strategies to enhance the features of Mo-DCs for more effective cancer immunotherapies.


Assuntos
Neoplasias da Próstata , Vacinas , Humanos , Masculino , Monócitos/metabolismo , Diferenciação Celular , Células Dendríticas/metabolismo , Antígeno B7-1/metabolismo , Antígenos HLA-DR/metabolismo , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Fenótipo , Vacinas/metabolismo
18.
Int J Biol Sci ; 20(3): 1064-1087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322117

RESUMO

Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1ß secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs' capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.


Assuntos
Células Dendríticas , Ácidos Cetoglutáricos , Humanos , Ácidos Cetoglutáricos/metabolismo , Células Dendríticas/metabolismo , Células Th1 , Células Th2 , Diferenciação Celular , Monócitos , Oxirredução , Células Cultivadas
19.
Angew Chem Int Ed Engl ; 63(13): e202318515, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38320193

RESUMO

Insufficient accumulation of lipid nanoparticles (LNPs)-based mRNA vaccines in antigen presenting cells remains a key barrier to eliciting potent antitumor immune responses. Herein, we develop dendritic cells (DCs) targeting LNPs by taking advantage of mannose receptor-mediated endocytosis. Efficient delivery of mRNA to DCs is achieved in vitro and in vivo utilizing the sweet LNPs (STLNPs-Man). Intramuscular injection of mRNA vaccine (STLNPs-Man@mRNAOVA ) results in a four-fold higher uptake by DCs in comparison with commercially used LNPs. Benefiting from its DCs targeting ability, STLNPs-Man@mRNAOVA significantly promotes the antitumor performances, showing a comparable therapeutic efficacy by using one-fifth of the injection dosage as the vaccine prepared from normal LNPs, thus remarkably avoiding the side effects brought by conventional mRNA vaccines. More intriguingly, STLNPs-Man@mRNAOVA exhibits the ability to downregulate the expression of cytotoxic T-lymphocyte-associated protein 4 on T cells due to the blockade of CD206/CD45 axis, showing brilliant potentials in promoting antitumor efficacy combined with immune checkpoint blockade therapy.


Assuntos
Vacinas Anticâncer , Lipossomos , Nanopartículas , Neoplasias , Humanos , Apresentação de Antígeno , Vacinas de mRNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Dendríticas/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
20.
J Med Chem ; 67(5): 4225-4233, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38364308

RESUMO

Dendritic cells (DCs) play a crucial role in HIV-1 infection of CD4+ T cells. DC-SIGN, a lectin expressed on the surface of DCs, binds to the highly mannosylated viral membrane protein gp120 to capture HIV-1 virions and then transport them to target T cells. In this study, we modified peptide C34, an HIV-1 fusion inhibitor, at different sites using different sizes of the DC-SIGN-specific carbohydrates to provide dual-targeted HIV inhibition. The dual-target binding was confirmed by mechanistic studies. Pentamannose-modified C34 inhibited virus entry into both DC-SIGN+ 293T cells (52%-71% inhibition at 500 µM) and CD4+ TZM-b1 cells (EC50 = 0.7-1.7 nM). One conjugate, NC-M5, showed an extended half-life relative to C34 in rats (T1/2: 7.8 vs 1.02 h). These improvements in antiviral activity and pharmacokinetics have potential for HIV treatment and the development of dual-target inhibitors for pathogens that require the involvement of DC-SIGN for infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Animais , Ratos , Linhagem Celular , HIV-1/metabolismo , Lectinas Tipo C/metabolismo , Células Dendríticas/metabolismo , Polissacarídeos/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...